Bac vector library and CRISPR/Cas in Echinoderms: Difference between pages

From EchinoWiki
(Difference between pages)
Jump to navigation Jump to search
imported>Ctelmer
 
imported>Ctelmer
No edit summary
 
Line 1: Line 1:
<p>On this page you will find information regarding the BAC vector for library preparation, protocols for screening BAC libraries, BAC minipreps and BAC recombineering. </p>


Welcome to the Echinobase CRISPR/Cas resource. A brief literature and method review is followed by tables of gRNA spacer sequences.


== BAC Vector for Macro-Array Genomic Libraries ==
Updated December 2020


Frengen E., Weichenhan D., Zhao B., Osoegawa K., van Geel M., de Jong P. J. 1999. A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics. 58(3):250-3. [https://www.ncbi.nlm.nih.gov/pubmed/?term=10373322%5BUID%5D&utm_source=gquery&utm_medium=search PUBMED 10373322]
<br>
<p><u>Abstract</u></p>
<p>To construct large-insert libraries for the sequencing, mapping, and functional studies of complex genomes, we have constructed a new modular bacterial artificial chromosome (BAC) vector, pBACe3.6 (GenBank Accession No. U80929). This vector contains multiple cloning sites located within the sacB gene, allowing positive selection for recombinant clones on sucrose-containing medium. A recognition site for the PI-SceI nuclease has also been included, which permits linearization of recombinant DNA irrespective of the characteristics of the insert sequences. An attTn7 sequence present in pBACe3.6 permits retrofitting of BAC clones by Tn7-mediated insertion of desirable sequence elements into the vector portion. The ability to retrofit BAC clones will be useful for functional analysis of genes carried on the cloned inserts. The pBACe3.6 vector has been used for the construction of many genomic libraries currently serving as resources for large-scale mapping and sequencing.</p>


<p>NB: pBACe3.6 clones have chloramphenicol antibiotic resistance. Clones should be grown in LB containing 12.5 ug chloramphenicol/ml. Further information on this vector is available from ''CHORI, Children's Hospital Oakland Research Center''</p>
'''''S. purpuratus'' genome editing to create insertions and deletions'''


== BAC Library Screening ==
To date CRISPR/Cas9 has been used to introduce insertion and deletion mutations (indels) into ''S. purpuratus nodall'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016]), ''polyketide synthase 1'', ''gcml'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016]), ''nanos2l'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=45207 Oulhen et al. 2017]) and ''dll1'' (''delta'') ([https://www.echinobase.org/literature/article.do?method=display&articleId=45720 Mellott et al. 2017]) genes. Attempts to mutate ''foxy'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=47178 Oulhen et al. 2019]) were unsuccessful. A number of different methods were used for gRNA synthesis (several using pT7-gRNA)  and NLS-SpCas9-NLS (pCS2-nCas9n (zebrafish codon-optimized), or pCS2-3xFLAG-NLS-SpCas9-NLS (codon optimized for human with a 3XFLAG-tag) were used in these studies (see below for details). The gRNAs and mRNAs were microinjected into fertilized eggs.


<p><u>Materials:</u></p>
<p>Hybridization solution:</p>
<p style="margin-left:10%; margin-right:10%;">• 5x SSPE</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1% NaPPi</p>
<p style="margin-left:10%; margin-right:10%;">• 5% (w/v) SDS</p>
<p>Stripping buffer:</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1x SSC</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1% SDS (w/v)</p>
<p style="margin-left:10%; margin-right:10%;">• 0.2 M Tris-HCl, pH 7.5</p>
<p>DNA Probes:</p>
<p style="margin-left:10%; margin-right:10%;">• See [https://www.agilent.com/cs/library/usermanuals/Public/300385.pdf Agilent Prime-II Random Primer Labeling Kit]</p>
<p style="margin-left:10%; margin-right:10%;">• Sephadex G50</p>
<br>
<p><u>Procedure:</u></p>
<p>'''''Making the probe''''':</p>
<p style="margin-left:10%; margin-right:10%;">1.  25ng DNA template - ensure has no vector seq (included T3 etc site as this will cross react with the BAC backbone seq) </p>
<p style="margin-left:10%; margin-right:10%;">2.  Add appropriate ul of H20 to bring 25 ng DNA to 23 ul total</p>
<p style="margin-left:10%; margin-right:10%;">3.  Add 10 ul of random primers (total is now 35 ul)</p>
<p style="margin-left:10%; margin-right:10%;">4.  Heat denature - boil 5 min</p>
<p style="margin-left:10%; margin-right:10%;">5.  Remove to room temperature</p>
<p style="margin-left:10%; margin-right:10%;">6.  Add 5 ul of 5X of dATP buffer</p>
<p style="margin-left:10%; margin-right:10%;">7.  Add alpha <sup>32</sup>P dATP at 3000 Ci/mmol.</p>
<p style="margin-left:10%; margin-right:10%;">8.  Add 1ul Klenow</p>
<p style="margin-left:10%; margin-right:10%;">9.  Incubate at 37<sup>°</sup>C  for 10 min</p>
<p style="margin-left:10%; margin-right:10%;">10. Add 2 ul of stop mix</p>
<p style="margin-left:10%; margin-right:10%;">11. Take 1 ul probe mix and add to 99 ul 0.2 M EDTA mix</p>
<p style="margin-left:10%; margin-right:10%;">12. Run through Sephadex G50</p>
<p style="margin-left:10%; margin-right:10%;">13. Take 1 ul post spin and add to 99 ul 0.2 M EDTA mix</p>
<p style="margin-left:10%; margin-right:10%;">14. Spot 1 ul of pre and post spin onto Whatman filters</p>
<p style="margin-left:10%; margin-right:10%;">15. Use scintillation counter to measure specific activity</p>
<br>
<p>'''''Screening Filters''''':</p>
<p>'''[CRITICAL]''' If using a filter for the first time, follow the stripping protocol before hybridization (see below)</p>
<p>1. Place the membrane(s) in glass bottles that fit in the Hybaid hybridization oven, using '''nitex sheets to separate the filters'''. A complete set of library filters will fit in one bottle for both hybridization and washing. </p>
<p>2. Prehybridize in a shaking water bath at 65°C (55°C for cross species probes) for 1 hr.</p>
<p>3. Remove HS to minimum amount - so that it just covers the filters Xul probe to the prehybridization solution.</p>
<p>4. Incubate for at least 12 hr at 65°C (55°C for cross species probes).</p><br>
<p>5. Following hybridization, wash the filters by incubating them in 2x SSPE, 0.1% (w/v) SDS at room temperature for 10 min. '''Repeat'''.</p>
<p>6. Replace the solution with 2x SSPE, 0.1% (w/v) SDS. Incubate at 65°C (55°C for cross species probes) for 15 min. '''Repeat'''.</p>
<p>7. Replace the solution with 1x SSPE, 0.1% (w/v) SDS. Incubate at 65°C (55°C for cross species probes) for 10 min. '''Repeat'''. </p>
<p>8. Replace the solution with 0.1x SSPE, 0.1% (w/v) SDS. Incubate at 65°C (55°C for cross species probes) for 10 min. '''Repeat'''. (Use this for high stringency).</p>
<br>
<p>9. Remove filter, wrap in plastic wrap and carry out autoradiography. </p>
<p>10. Plastic wrap should be employed without trapped air for best exposures. From the final wash, pick up the filter by one corner and allow it to drip dry for 10 seconds. Place the filter face up on a piece of plastic wrap still attached to the roll. Fold the attached edge off the filter, then roll the top layer of wrap onto the filter. This expels any trapped air Most importantly, do not allow the filter to dry until it is stripped.</p>
<br>
<p>'''''Stripping filters''''':</p>
<p>Bring 0.5% SDS to a boil.</p>
<p>Pour on the membrane and allow to cool to room temperature.</p>
<p>(If necessary, repeat)</p>
<br>
<p>'''''Storing filters''''':</p>
<p>'''Short-term storage''' (1 or 2 weeks)</p>
<p style="margin-left:10%; margin-right:10%;">a. Wet two sheets of Whatmann paper in EDTA-containing stripping buffer.</p>
<p style="margin-left:10%; margin-right:10%;">b. Place the membrane between the two wet papers.</p>
<p style="margin-left:10%; margin-right:10%;">c. Wrap the papers and the membrane with plastic wrap and keep them in refrigerator until reuse.</p>
<p>'''Long-term storage'''</p>
<p style="margin-left:10%; margin-right:10%;">a. Sandwich between two sheets of plastic wrap.</p>
<p style="margin-left:10%; margin-right:10%;">b. Expose the membrane to X-ray film for at least 12 hr to check whether stripping is done completely. If stripping is done completely, place the membrane between two sheets of dry Whatmann paper and dry it at room temperature for at least 24 hr (until completely dry).</p>
<p style="margin-left:10%; margin-right:10%;">c. If stripping is not complete, repeat steps 1&2 but execute step 2 at the higher temperature.</p>
<br>
<p>'''''Determining microwell plate coordinates from arrayed filters''''':</p>
<p>The high-density filter array is a square arrangement of 48X48 blocks which can be thought of as six sub-fields of 16X24 blocks. Thus each sub-field is equivalent to the wells of a 384-well plate. Each block is a 4X4 array of eight clones spotted in duplicate. That is, the inoculum from each well of each plate has been spotted twice onto the filter in the same 4X4 block. The arrangement has been designed so that the two spots define a unique angle different from all the others within the 4X4 block. The unique angular relationship of the spot pair defines the plate from which that clone was taken. In the accompanying figure, a 4X4 block adjacent to each sub-field indicates the plate number assignments for the blocks in that sub-field. The position of a 4X4 block containing a positive spot pair can be described by the X-Y coordinates of the block in the sub-field (X coordinates are A through P, from bottom to top; Y coordinates are 1 through 24, from right to left). For filters beyond the first one (A) in the set, the plate numbers are increased in increments of 48, thus the plate number for the B filter is the decoded number plus 48; for the C filter, plus 96; etc.</p>
<p>'''EXAMPLE:''' On the accompanying figure there is a positive spot pair circled in white. It lies in the left-middle sub-field at X-Y position I-10. That is I blocks (9) up from the bottom of the sub-field and 10 blocks over from the centerline. Thus the well position with in the plate is I-10. For this sub-field, the angle of the spot pair within the block indicates #31. There fore, the clone is located on plate #31 in well I-10.</p>
<p>'''NOTES:''' Identification of spot coordinates in the case where the background on the filter is very low is aided by pre-marking the filters when they are dry and the colony residue is visible. Dry filters are marked by indentations from a ball point pen. The pen tip is pressed into a filter that is placed on a piece of 3MM paper on a hard surface while observing the operation in oblique lighting. Dots can thus be made at the boundaries of the 6 sub-fields and at the extreme corners of the array.</p>
<p>To aid orientation in the newer filter sets, the A1 well for each plate has been left empty. Thus there are six empty squares that have no bacteria on the filter. After hybridization these squares have lower background and will orient the filter. The squares are 3 sets of 2 across when the label is on the upper right hand edge.</p>


== BAC Miniprep Protocol ==
'''Single nucleotide edits'''


<p>This protocol uses alkaline lysis and precipitation to isolate BAC DNA to analyze by Pulsed-field Gel Electrophoresis, PFGE, or PCR. BACs purified using this protocol '''cannot''' be injected into fertilized eggs.</p>
Additional studies fused a deaminase to two mutants of SpCas9 for achieving targeted, single nucleotide edits to ''[https://www.echinobase.org/gene/showgene.do?method=display&geneId=23094247& alx1]'', ''[https://www.echinobase.org/gene/showgene.do?method=display&geneId=23083023 segment polarity protein dishevelled homolog DVL-3]'' (''Dsh'') and ''[https://www.echinobase.org/gene/showgene.do?method=display&geneId=23139056 polyketide synthase 1]'' (''Pks1'') to produce STOP codons ([https://www.echinobase.org/literature/article.do?method=display&articleId=45725 Shevidi et al. 2017]).
<br>
<p><u>Materials:</u></p>
<p>Buffer P1: Stored at 4<sup>o</sup>C. '''Add the RNAseA just prior to use.'''</p>
<p style="margin-left:10%; margin-right:10%;">• 15 mM Tris, pH 8.0</p>
<p style="margin-left:10%; margin-right:10%;">• 10 mM EDTA, pH 8.0</p>
<p style="margin-left:10%; margin-right:10%;">• 100 μg/ml RNase A</p>
<p>Buffer P2: '''Make fresh each use.'''</p>
<p style="margin-left:10%; margin-right:10%;">• 0.2N NaOH</p>
<p style="margin-left:10%; margin-right:10%;">• 1% SDS</p>
<p>Buffer P3: '''Cool on ice prior to use.'''</p>
<p style="margin-left:10%; margin-right:10%;">• 3M KAc pH 5.5</p>
<br>
<p><u>Procedure:</u></p>
<p>1. Inoculate a single bacterial colony into 3 ml LB containing 12.5μg/ml chloramphenicol in a 14 ml culture tube. Grow overnight (< 16 hrs), shaking at 250-300 rpm.</p>
<p style="margin-left:10%; margin-right:10%;">'''Optional''': make bacterial glycerol stock (15%) of BAC.</p>
<p>2. Pellet the bacteria by transferring 1.5 ml of each culture to a 1.7 ml microcentrifuge tube and centrifuge at 6800 g  for 3 min. Discard supernatant.</p>
<p>3. Repeat step 2.</p>
<br>
<p>4. Resuspend each pellet in 250 μl '''P1''' carefully. Be sure to fully resuspend until suspension is creamy with no clumps.</p>
<p>5. Add 250 μl '''P2''' and invert tubes 5 times to mix. The appearance of the suspension should change from very turbid to almost translucent.</p>
<p>6. Add 350 μl cold '''P3''' slowly to each tube and shake gently during addition. A thick white precipitate consisting of E. coli DNA and protein will form. Invert the tube several times to mix the solution thoroughly.</p>
<p>7. Place the tubes on ice for 5 min.</p>
<br>
<p>8. Centrifuge at 18,000 x g for 10 min at room temperature to pellet the white precipitate.</p>
<p>9. Transfer the clear supernatant (~700-800 μl) to a 1.7 ml microcentrifuge tube.</p>
<p>10. Spin again in a microcentrifuge for 5 min at RT to remove the rest of the debris. Transfer the clear supernatant to a fresh tube.</p>
<p>11. Add 0.8 ml '''ice-cold isopropanol'''. Mix well by inverting tubes ~10 times. Place the tube on ice for 30 min, or leave overnight at  4°C.</p>
<br>
<p>12.  Centrifuge at 18,000 x g for 30 min at 4<sup>o</sup>C to pellet BAC DNA.</p>
<p>13. Remove supernatant and add 1ml of '''ice-cold 70% EtOH'''. Invert tubes several times to wash the DNA pellets. Centrifuge at 18,000 x g for 15 min at 4<sup>o</sup>C.</p>
<p>14. Repeat step 13.</p>
<br>
<p>15. Centrifuge at 18,000 x g for 2 min at 4<sup>o</sup>C to remove residual EtOH. Carefully remove all supernatant, taking care not to dislodge the pellet.</p>
<p>16. Briefly air-dry pellet at room temperature.</p>
<p>17. Resuspend pellet in 20-30 μl TE (10 mM Tris; 1 mM EDTA). Gently flick the bottom of the tubes to resuspend DNA. '''Do not vortex or pipet up and down'''.</p>
<br>
<p>For storing use high EDTA TE - i.e. 10mM Tris 10mM EDTA.</p>
<p>To analyze the BACs, use 6 μL of this prep in a ''Not''I digest to run on a PFGE.</p>
<p>For PCR dilute 1 μl of this prep in 24 μl TE.</p>


== BAC Recombineering ==


<p>More information is available here: [https://pubmed.ncbi.nlm.nih.gov/30948008/?from_term=buckley+k&from_page=2&from_pos=3 Techniques for analyzing gene expression using BAC-based reporter constructs. Buckley KM, Ettensohn CA. Methods Cell Biol. 2019;151:197-218. doi: 10.1016/bs.mcb.2019.01.004. Epub 2019 Feb 23. PMID: 30948008 Review.]</p>
'''Reviews'''
<br>
<p><u>Materials</u>:</p>
<p>''Reagents'':</p>
<p style="margin-left:10%; margin-right:10%;">LB with kanamycin (25 μg/mL)</p>
<p style="margin-left:10%; margin-right:10%;">LB with chloramphenicol (12.5 μg/mL)</p>
<p style="margin-left:10%; margin-right:10%;">SOC media</p>
<p style="margin-left:10%; margin-right:10%;">10% L-(+)-arabinose</p>
<p style="margin-left:10%; margin-right:10%;">Gel extraction kit</p>
<p style="margin-left:10%; margin-right:10%;">High fidelity DNA polymerase</p>
<p style="margin-left:10%; margin-right:10%;">DpnI</p>
<p style="margin-left:10%; margin-right:10%;">3 M NaOAc (pH 5.2)</p>
<p>''Cell lines'':</p>
<p>1. Electrocompetent DH10B</p>
<p>2. EL250. A DH10B-derived strain that contains a λ prophage with the recombination genes ''exo'', ''bet'', and ''gam''. These genes are repressed by the temperature-sensitive repressor cI857.</p>
<br>
<p><u>Procedure:</u></p>
<br>
<p>''Prepare the recombination cassette''</p>


<p>Recommendations for designing the “recombination arms” are available in [https://pubmed.ncbi.nlm.nih.gov/30948008/?from_term=buckley+k&from_page=2&from_pos=3 Buckley KM, Ettensohn, CA]</p>
Reviews of the methods are available ([https://www.echinobase.org/literature/article.do?method=display&articleId=45567 Cui et al. 2017]; [https://www.echinobase.org/literature/article.do?method=display&articleId=47096 Lin et al. 2019]).
<br>
 
<p>''Amplify the recombination cassette (RC)''</p>
 
<p>1. Use high fidelity DNA polymerase to amplify the RC  with both arms (amplify from the 5′ end of the 5′ arm to the 3′ end of the 3′ arm) from plasmid DNA. Minimize the amount of plasmid DNA used in PCR.</p>
'''Editing other echinoderm species'''
<p>2. Run the product on an 0.8% agarose gel and purify the fragment using a commercial gel extraction kit.</p>
 
<p>3. Treat the amplified RC with 5 U DpnI in the appropriate buffer.</p>
Editing technology has also been used in ''Hemicentrotus pulcherrimus'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=47348 Liu et al. 2019]; [https://www.echinobase.org/literature/article.do?method=display&articleId=48597 Wessel et al. 2020]) and ''Temnopleurus reevesii'' ([https://www.echinobase.org/literature/article.do?method=display&articleId=48853 Yaguchi et al. 2020]).
<p>4. Incubate the reaction at 37<sup>o</sup>C for 1 hour.</p>
 
<p>5. Heat the reaction at 65<sup>o</sup>C for 15 minutes.</p>
 
<p>6. Precipitate the recombination cassette by adding 0.1 volume sodium acetate (3 M, pH 5.2) and 2 volumes cold ethanol (100%).</p>
'''Design overview'''
<p>7. Incubate at -20<sup>o</sup>C at least two hours to overnight.</p>
 
<p>8. Pellet the DNA by centrifugation (maximum speed, 4<sup>o</sup>C, 30 minutes).</p>
CRISPR systems in nature are composed of the Cas9 nuclease and two RNAs, the CRISPR RNA (crRNA) that binds to a complementary DNA sequence and binds to the transactivating RNA (tracrRNA) that also binds to a specific Cas9 protein. For ease of use the crRNA and tracrRNA have been combined into a single guide RNA (sgRNA) molecule for use with the ''Streptococcus pyogene''s Cas9 (SpCas9). The sgRNA has the target gene '''spacer''' sequence and the '''scaffold''' sequence that interacts with the Cas9 protein. The design of the gRNA target gene specific spacer sequence can be performed using online tools such as CRISPRscan. Briefly the software will scan for the NGG protospacer adjacent motif (PAM) sequence then evaluate the 20 nucleotides that are 5' of the PAM site for their suitability as a spacer sequence. Favorable spacer sequences are more than 50% GC, 20 nucleotides in length and do not have "off-target" binding sites. Additionally, if using T7 RNA polymerase to produce the sgRNA then two '''5' GGs''' should be considered, editing occurred with an 80% frequency with GG-, 75% NG-, 60% GN- and 37.5% if NN- ([https://www.echinobase.org/literature/article.do?method=display&articleId=48856 Thomas et al. 2014]).
<p>9. Wash the pellet with 70% ethanol, dry briefly and resuspend in 20 μl H 2 O.</p>
 
<br>
 
<p>''Transform the BAC into EL250 cells''</p>
'''Method overview'''
<p>1. Pick a starter culture of EL250 cells from frozen stocks or fresh streak in 3mL LB (no antibiotic). Incubate shaking overnight at 30-32°C.</p>
 
<p>2. Dilute the culture 0.7 mL in 50 mL fresh LB. Incubate for ~5 hrs at 30°C, until O.D.600 is 0.8-1.0. From this point on, '''KEEP ON ICE AT ALL TIMES.'''</p>
Published methods have used microinjection of RNA into embryos.
<p>3. Centrifuge bacteria for 10 min, 4°C, 3000 rpm using a pre-chilled 50 mL conical.</p>
 
<p>4. Resuspend in 50 mL ice-cold dH2O and spin down as above.</p>
The capped mRNA for ''Streptococcus pyogenes'' Cas9 with nuclear localization signals was produced using either linearized [https://www.addgene.org/47929/ pCS2-nCas9n] or [https://www.addgene.org/51307/ pCS2-3XFLAG-NLS-SpCas9-NLS] as the template for the MEGAscript SP6 Transcription Kit or the mMESSAGE mMACHINE SP6 Transcription Kit. The RNA was then purified.
<p>'''Tip''': resuspend the pellet first in 1 mL, but avoid pipetting. Instead rock/shake the tube briskly against and within the ice bucket. This takes time, but is necessary to better preserve the cells. Once the pellet is resuspended in a small volume, top off to 50 mL and mix gently by inverting a few times.</p>
 
<p>5. Repeat steps 3 – 4.</p>
To make the gRNAs several approaches have been used. The [https://www.addgene.org/46759/ pT7-gRNA] was designed to clone the gene specific spacer/target sequence into BsmBI restriction sites. The vector contains the T7 promoter and the gRNA scaffold followed by a restriction site for linearization prior to RNA production. More recently the pT7-gRNA plasmid has been used as template for a primer containing the T7 promoter, spacer sequence and an overlap sequence to prime the PCR and add the scaffold. This overlap approach has also been used with a synthesized scaffold oligo for PCR (eg. 5’ AAAAGCACCG ACTCGGTGCC ACTTTTTCAA GTTGATAACG GACTAGCCTT ATTTTAACTT GCTATT<u>TCTA GCTCTAAAAC</u> 3' where the overlap sequence is underlined) . The sgRNA is then produced using the MEGAshortscript T7 Transcription Kit and RNA is purified.
<p>6. Centrifuge bacteria for 10 min, 4°C, 3000 rpm. Resuspend in 1 mL ice-cold dH2O as above. Transfer to chilled 1.5 mL tube.</p>
 
<p>7. Centrifuge for 2 min, 4°C, maximum speed.</p>
For microinjection the 500-1000 ng/ul Cas9 mRNA and 150-400 ng/ul sgRNA are mixed (literature varies). The NLS-Cas9-NLS protein is approximately 4.4X the mass of gRNAs so sgRNAs are in excess. If 50pl is injected this is on the order of 10^7 molecules of Cas9 mRNA and 10^8 molecules of sgRNA.
<p>8. Wash 3 times with ice-cold dH2O.</p>
 
<p>9. Use the cells immediately for electroporation. Washed, electrocompetent cells can be frozen @ -80°C with 10% f.c. glycerin, but transforming efficiency will decrease. It is best to use fresh cells every time.</p>
 
<p>10. Add 200 ng of BAC DNA (~1/2-1/3 of a mini-prep) to 10 μl electrocompetent EL250 cells + 10 μl dH2O on ice. Transfer to ice-cold 0.1 mm electroporation cuvette.</p>
'''Table of sgRNA sequences.'''
<p>11. Electroporate at 1.4-1.7 kV/cm, immediately add 1 mL S.O.C. or LB to the cuvette, and transfer to a 15 mL culture tube. BAC transformation work better at slightly lower voltages (1.4-1.7 kV/cm). The bigger the BAC, the lower the kV/cm.</p>
This table shows the gene specific spacer RNA sequence that is 5' to the constant scaffold RNA sequence. The gRNA binds to the reverse complement of the DNA sequence indicated (other strand).  
<p>12. Incubate shaking at 30°C for 90 min.</p>
 
<p>13. Plate everything on LB/chl plates and incubate up to 24 hrs at 30°C. Using the large plates increases quality of colonies and overall efficiency.</p>
{| style="border:solid 1px black" class="sortable wikitable"
<p>14, Pick a few colonies and grow at 30°C overnight to 24 hr in LB/chl.</p>
!Name      !!Synonym    !!sgRNA sequence 5-3'!!DNA sequence!!Edits Yes/NO!!References   
<p>15. To verify that the transformation worked correctly, mini-prep the BACs, digest with NotI and analyze on a PFGE.</p>
|-
<p>16. Make glycerol stocks of positive EL250-BAC clones.</p>
|
<br>
<div class="style8" align="left">
<p>''Recombineer the fluorescent protein into the BAC DNA''</p>
 
<p>1. Pick a starter culture of EL250-BAC cells from frozen stocks or fresh streak in 3 mL LB/chl and incubate overnight at 30°C.</p>
nodall gRNA1
<p>2. Dilute the culture 1 mL in 50 mL fresh LB/chl and incubate for ~6 hrs at 30°C, until O.D.600 is 0.8-1.0.</p>
 
<p>3. Place in pre-warmed 42°C shaking water bath for 15 min to activate the recombinase genes.</p>
</div>
<p>If a shaking water bath is not available, gently swirl the flasks by hand for the entire 15 min, taking care to keep the bottom fully submerged in the bath. Due to this step (and the washing steps thereafter), it is difficult to prepare more than two BACs simultaneously.</p>
|
<p>4. Immediately chill by swirling in ice-water slurry for ~10 min.</p>
<div class="style8" align="left">
<p>5. Transfer to a pre-chilled 50 mL conical tube, pellet and wash as described above (on ice).</p>
 
<p>6. Add 200 ng of FP cassette DNA to 10 μl electrocompetent EL250-BAC cells + 10 μl dH2O on ice.</p>
E1_123
<p>7. Transfer to ice-cold 0.1 mm electroporation cuvette. Electroporate at 1.8 kV/cm and immediately transfer to 1 mL S.O.C or LB. Incubate at 30°C for 1 hr. Plate 50 μl and 500 μl on LB chl/kan plates and incubate 24 hrs at 30°C.</p>
 
<p>8. Colonies picked right after overnight incubation @ 30°C have free FP cassette in them, whereas those picked after a full 24 hr of incubation have recombined FP into the BAC. An EL250 cell with recombined BAC may grow slower due to low copy number of the BAC vector.</p>
</div>
<p>9. Check the recombination by restriction digest or PCR.</p>
|
<p>10. Make glycerol stocks (15%) of EL250-BAC/FP clones.</p>
<div class="style8" align="left">
<br>
 
<p>''Remove the kanamycin cassette''</p>
GGCCUCAGGUCGCACCAGA
<p>1. Start an overnight culture of EL250-BAC/FP cells in 3 mL LB chl/kan. Dilute culture 1:50 in 25 mL of LB/chl. Grow at 30°C for ~5 hrs until O.D.600 is ~0.5.</p>
 
<p>2. Add 0.25 mL 10% L-(+)-arabinose and grow for 1 hr at 30°C. **'''Note''': D-(-)- arabinose will not work. It has been tried.</p>
</div>
<p>3. Dilute culture 1:10 in 10 mL of LB/chl and grow for 1 hr at at 30°C.</p>
|
<p>4. Streak 2 μl of this culture on an LB/chl plate. Grow overnight at 30°C.</p>
<div class="style8" align="left">
<p>5. Select colonies that have lost the kanamycin resistance cassette by streaking clones (~4) onto both LB/chl and LB/chl/kan plates and grow at 30°C overnight. The colonies that do not grow on the LB/chl/kan plates have successfully eliminated (flipped) the kanamycin resistance cassette. This step is very efficient and gives nearly 100% flipped clones.</p>
 
<p>6. PCR diagnostic and sequencing can be used to confirm removal of kan cassette.</p>
GGCCTCAGGTCGCACCAGA
<p>7. Make glycerol stocks (15% glycerol) of EL250-BAC/FP/kan-flipped clones.</p>
 
<br>
</div>
<p>''Transform the recombinant BAC into DH10B cells''</p>
|
<p>1. Miniprep an overnight culture of EL250-BAC/FP/kan-flipped cells.</p>
<div class="style8" align="center">
<p>2. On ice, combine 1 µl of the BAC DNA (miniprep) with 10 µl commercial DH10B electrocompetent cells + 10 µl dH2O.</p>
 
<p>3. Transfer to ice-cold 0.1mm electroporation cuvette. Electroporate at 1.4 kV/cm and immediately transfer to 1 mL S.O.C or LB.</p>
NO
<p>4.Incubate at 37°C for 1 hr. Plate 50 µl and 200 µl on each of two LB/chl plates and incubate overnight at 37°C.</p>
 
<p>5. Pick a few colonies in 3 mL LB/chl and grow overnight at 37°C.</p>
</div>
<p>6. Miniprep these clones to confirm the size of the BAC insert and the FP recombination. Compare with the wildtype and non-flipped FP BACs as control. Analyze by PFGE.</p>
|
<p>7. Make glycerol stocks (15% glycerol) of this construct.</p>
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nodall gRNA2
 
</div>
|
<div class="style8" align="left">
 
E1_157
 
</div>
|
<div class="style8" align="left">
 
GGGCGUCCGGUGUGAUAAG
 
</div>
|
<div class="style8" align="left">
 
GGGCGTCCGGTGTGATAAG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nodall gRNA3
 
</div>
|
<div class="style8" align="left">
 
E1_272
 
</div>
|
<div class="style8" align="left">
 
GGAAGAAUGCCAAGCCAUUG
 
</div>
|
<div class="style8" align="left">
 
GGAAGAATGCCAAGCCATTG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nodall gRNA4
 
</div>
|
<div class="style8" align="left">
 
E2_63
 
</div>
|
<div class="style8" align="left">
 
GGACAGCUUCGUUGGCGGGC
 
</div>
|
<div class="style8" align="left">
 
GGACAGCTTCGTTGGCGGGC
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nodall gRNA5
 
</div>
|
<div class="style8" align="left">
 
E2_777
 
</div>
|
<div class="style8" align="left">
 
GGUAGGCGUUGAACUGCUUU
 
</div>
|
<div class="style8" align="left">
 
GGTAGGCGTTGAACTGCTTT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nodall gRNA6
 
</div>
|
<div class="style8" align="left">
 
E2_885
 
</div>
|
<div class="style8" align="left">
 
GGUGUCCGUCUCUCGGGU
 
</div>
|
<div class="style8" align="left">
 
GGTGTCCGTCTCTCGGGT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=44372 Lin and Su 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
LOC588806 gRNA1
 
</div>
|
<div class="style8" align="left">
 
Sp.PKS1.175(+)
 
</div>
|
<div class="style8" align="left">
 
GGUGGUGUCUUUGUCGGUAU
 
</div>
|
<div class="style8" align="left">
 
GTGGTGTCTTTGTCGGTAT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
LOC588806 gRNA2
 
</div>
|
<div class="style8" align="left">
 
Sp.PKS1.547(-)
 
</div>
|
<div class="style8" align="left">
 
GGUGAGGGGUUUGAGGACAA
 
</div>
|
<div class="style8" align="left">
 
TGAGGGGTTTGAGGACAA
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
LOC588806 gRNA3
 
</div>
|
<div class="style8" align="left">
 
Sp.PKS1.806(-)
 
</div>
|
<div class="style8" align="left">
 
GGAGAGGGUUGUCUUUGGUG
 
</div>
|
<div class="style8" align="left">
 
GAGAGGGTTGTCTTTGGTG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
gcml gRNA1
 
</div>
|
<div class="style8" align="left">
 
Sp.GCM.63(+)
 
</div>
|
<div class="style8" align="left">
 
GGCCGCCGGAGCUGCCGGGU
 
</div>
|
<div class="style8" align="left">
 
GCCGCCGGAGCTGCCGGGT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
 
|
<div class="style8" align="left">
 
gcml gRNA2
 
</div>
|
<div class="style8" align="left">
 
Sp.GCM.390(+)
 
</div>
|
<div class="style8" align="left">
 
GGCUGUUCGGCCAGCCACUU
 
</div>
|
<div class="style8" align="left">
 
CTGTTCGGCCAGCCACTT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
gcml gRNA3
 
</div>
|
<div class="style8" align="left">
 
Sp.GCM.541(+)
 
</div>
|
<div class="style8" align="left">
 
GGGAUCCUAUUCCAAUCGAA
 
</div>
|
<div class="style8" align="left">
 
GATCCTATTCCAATCGAA
 
</div>
|
<div class="style8" align="center">
 
NO
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
gcml gRNA4
 
</div>
|
<div class="style8" align="left">
 
Sp.GCM.944(-)
 
</div>
|
<div class="style8" align="left">
 
GGGAGUCCAGCCGUCCAUCU
 
</div>
|
<div class="style8" align="left">
 
GAGTCCAGCCGTCCATCT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=48855 Oulhen and Wessel 2016])
 
</div>
|-
|
<div class="style8" align="left">
 
nanos2l gRNA1
 
</div>
|
<div class="style8" align="left">
 
Sp nanos2.190
 
</div>
|
<div class="style8" align="left">
 
GGUGACUGGCUCGUCGAGAC
 
</div>
|
<div class="style8" align="left">
 
TGACTGGCTCGTCGAGAC
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45207 Oulhen et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
nanos2l gRNA2
 
</div>
|
<div class="style8" align="left">
 
Sp nanos2.250
 
</div>
|
<div class="style8" align="left">
 
GGGAUCUCAGCGAUGUUCAG
 
</div>
|
<div class="style8" align="left">
 
GATCTCAGCGATGTTCAG
 
</div>
|
<div class="style8" align="center">
 
NO
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45207 Oulhen et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
nanos2l gRNA3
 
</div>
|
<div class="style8" align="left">
 
Sp nanos2.295
 
</div>
|
<div class="style8" align="left">
 
GGAGGAAGGCGAGCCAACAA
 
</div>
|
<div class="style8" align="left">
 
GGAGGAAGGCGAGCCAACAA
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45207 Oulhen et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
nanos2l gRNA4
 
</div>
|
<div class="style8" align="left">
 
Sp nanos2.319
 
</div>
|
<div class="style8" align="left">
 
GGAGGUGGUGCUACGGGUGU
 
</div>
|
<div class="style8" align="left">
 
GAGGTGGTGCTACGGGTGT
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45207 Oulhen et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
dll gRNA1
 
</div>
|
<div class="style8" align="left">
 
Delta-1 (19D10)
 
</div>
|
<div class="style8" align="left">
 
GGGUGAACUGGUAGCACGG
 
</div>
|
<div class="style8" align="left">
 
GGGTGAACTGGTAGCACGG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45720 Mellott et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
dll gRNA2
 
</div>
|
<div class="style8" align="left">
 
Delta-2 (20D11)
 
</div>
|
<div class="style8" align="left">
 
GGCUACACGUGCCUCUGUCC
 
</div>
|
<div class="style8" align="left">
 
GGCTACACGTGCCTCTGTCC
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45720 Mellott et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
dll gRNA3
 
</div>
|
<div class="style8" align="left">
 
Delta-3 (20D14)
 
</div>
|
<div class="style8" align="left">
 
GGACCGAAUCAGAUUCCGCG
 
</div>
|
<div class="style8" align="left">
 
GGACCGAATCAGATTCCGCG
 
</div>
|
<div class="style8" align="center">
 
nd
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45720 Mellott et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
alx1 gRNA1
 
</div>
|
<div class="style8" align="left">
 
Alx1-sgRNA1
 
</div>
|
<div class="style8" align="left">
 
GGAGAACAGGCGCGCCAAGUGG
 
</div>
|
<div class="style8" align="left">
 
AGAACAGGCGCGCCAAGTG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45725 Shevidi et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
alx1 gRNA2
 
</div>
|
<div class="style8" align="left">
 
Alx1-sgRNA2
 
</div>
|
<div class="style8" align="left">
 
GGCGUGGGGGGCCUCAACCCGG
 
</div>
|
<div class="style8" align="left">
 
GCGTGGGGGGCCTCAACCCGG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45725 Shevidi et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
LOC584189 gRNA1
 
</div>
|
<div class="style8" align="left">
 
Dsh-sgRNA1
 
</div>
|
<div class="style8" align="left">
 
GGGUAGCUUAGCCAGGCCGAUG
 
</div>
|
<div class="style8" align="left">
 
GGTAGCTTAGCCAGGCCGATG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45725 Shevidi et al. 2017])
 
</div>
|-
|
<div class="style8" align="left">
 
LOC584189 gRNA2
 
</div>
|
<div class="style8" align="left">
 
Dsh-sgRNA2
 
</div>
|
<div class="style8" align="left">
 
GGCAUCGGUCCCCCUAGCCAGG
 
</div>
|
<div class="style8" align="left">
 
GGCATCGGTCCCCCTAGCCAGG
 
</div>
|
<div class="style8" align="center">
 
Yes
 
</div>
|
<div class="style8" align="left">
 
([https://www.echinobase.org/literature/article.do?method=display&articleId=45725 Shevidi et al. 2017])
 
</div>
|-

Revision as of 15:02, 1 December 2020

Welcome to the Echinobase CRISPR/Cas resource. A brief literature and method review is followed by tables of gRNA spacer sequences.

Updated December 2020


S. purpuratus genome editing to create insertions and deletions

To date CRISPR/Cas9 has been used to introduce insertion and deletion mutations (indels) into S. purpuratus nodall (Lin and Su 2016), polyketide synthase 1, gcml (Oulhen and Wessel 2016), nanos2l (Oulhen et al. 2017) and dll1 (delta) (Mellott et al. 2017) genes. Attempts to mutate foxy (Oulhen et al. 2019) were unsuccessful. A number of different methods were used for gRNA synthesis (several using pT7-gRNA) and NLS-SpCas9-NLS (pCS2-nCas9n (zebrafish codon-optimized), or pCS2-3xFLAG-NLS-SpCas9-NLS (codon optimized for human with a 3XFLAG-tag) were used in these studies (see below for details). The gRNAs and mRNAs were microinjected into fertilized eggs.


Single nucleotide edits

Additional studies fused a deaminase to two mutants of SpCas9 for achieving targeted, single nucleotide edits to alx1, segment polarity protein dishevelled homolog DVL-3 (Dsh) and polyketide synthase 1 (Pks1) to produce STOP codons (Shevidi et al. 2017).


Reviews

Reviews of the methods are available (Cui et al. 2017; Lin et al. 2019).


Editing other echinoderm species

Editing technology has also been used in Hemicentrotus pulcherrimus (Liu et al. 2019; Wessel et al. 2020) and Temnopleurus reevesii (Yaguchi et al. 2020).


Design overview

CRISPR systems in nature are composed of the Cas9 nuclease and two RNAs, the CRISPR RNA (crRNA) that binds to a complementary DNA sequence and binds to the transactivating RNA (tracrRNA) that also binds to a specific Cas9 protein. For ease of use the crRNA and tracrRNA have been combined into a single guide RNA (sgRNA) molecule for use with the Streptococcus pyogenes Cas9 (SpCas9). The sgRNA has the target gene spacer sequence and the scaffold sequence that interacts with the Cas9 protein. The design of the gRNA target gene specific spacer sequence can be performed using online tools such as CRISPRscan. Briefly the software will scan for the NGG protospacer adjacent motif (PAM) sequence then evaluate the 20 nucleotides that are 5' of the PAM site for their suitability as a spacer sequence. Favorable spacer sequences are more than 50% GC, 20 nucleotides in length and do not have "off-target" binding sites. Additionally, if using T7 RNA polymerase to produce the sgRNA then two 5' GGs should be considered, editing occurred with an 80% frequency with GG-, 75% NG-, 60% GN- and 37.5% if NN- (Thomas et al. 2014).


Method overview

Published methods have used microinjection of RNA into embryos.

The capped mRNA for Streptococcus pyogenes Cas9 with nuclear localization signals was produced using either linearized pCS2-nCas9n or pCS2-3XFLAG-NLS-SpCas9-NLS as the template for the MEGAscript SP6 Transcription Kit or the mMESSAGE mMACHINE SP6 Transcription Kit. The RNA was then purified.

To make the gRNAs several approaches have been used. The pT7-gRNA was designed to clone the gene specific spacer/target sequence into BsmBI restriction sites. The vector contains the T7 promoter and the gRNA scaffold followed by a restriction site for linearization prior to RNA production. More recently the pT7-gRNA plasmid has been used as template for a primer containing the T7 promoter, spacer sequence and an overlap sequence to prime the PCR and add the scaffold. This overlap approach has also been used with a synthesized scaffold oligo for PCR (eg. 5’ AAAAGCACCG ACTCGGTGCC ACTTTTTCAA GTTGATAACG GACTAGCCTT ATTTTAACTT GCTATTTCTA GCTCTAAAAC 3' where the overlap sequence is underlined) . The sgRNA is then produced using the MEGAshortscript T7 Transcription Kit and RNA is purified.

For microinjection the 500-1000 ng/ul Cas9 mRNA and 150-400 ng/ul sgRNA are mixed (literature varies). The NLS-Cas9-NLS protein is approximately 4.4X the mass of gRNAs so sgRNAs are in excess. If 50pl is injected this is on the order of 10^7 molecules of Cas9 mRNA and 10^8 molecules of sgRNA.


Table of sgRNA sequences. This table shows the gene specific spacer RNA sequence that is 5' to the constant scaffold RNA sequence. The gRNA binds to the reverse complement of the DNA sequence indicated (other strand).

Name Synonym sgRNA sequence 5-3' DNA sequence Edits Yes/NO References

nodall gRNA1

E1_123

GGCCUCAGGUCGCACCAGA

GGCCTCAGGTCGCACCAGA

NO

nodall gRNA2

E1_157

GGGCGUCCGGUGUGAUAAG

GGGCGTCCGGTGTGATAAG

Yes

nodall gRNA3

E1_272

GGAAGAAUGCCAAGCCAUUG

GGAAGAATGCCAAGCCATTG

Yes

nodall gRNA4

E2_63

GGACAGCUUCGUUGGCGGGC

GGACAGCTTCGTTGGCGGGC

Yes

nodall gRNA5

E2_777

GGUAGGCGUUGAACUGCUUU

GGTAGGCGTTGAACTGCTTT

Yes

nodall gRNA6

E2_885

GGUGUCCGUCUCUCGGGU

GGTGTCCGTCTCTCGGGT

Yes

LOC588806 gRNA1

Sp.PKS1.175(+)

GGUGGUGUCUUUGUCGGUAU

GTGGTGTCTTTGTCGGTAT

Yes

LOC588806 gRNA2

Sp.PKS1.547(-)

GGUGAGGGGUUUGAGGACAA

TGAGGGGTTTGAGGACAA

Yes

LOC588806 gRNA3

Sp.PKS1.806(-)

GGAGAGGGUUGUCUUUGGUG

GAGAGGGTTGTCTTTGGTG

Yes

gcml gRNA1

Sp.GCM.63(+)

GGCCGCCGGAGCUGCCGGGU

GCCGCCGGAGCTGCCGGGT

Yes

gcml gRNA2

Sp.GCM.390(+)

GGCUGUUCGGCCAGCCACUU

CTGTTCGGCCAGCCACTT

Yes

gcml gRNA3

Sp.GCM.541(+)

GGGAUCCUAUUCCAAUCGAA

GATCCTATTCCAATCGAA

NO

gcml gRNA4

Sp.GCM.944(-)

GGGAGUCCAGCCGUCCAUCU

GAGTCCAGCCGTCCATCT

Yes

nanos2l gRNA1

Sp nanos2.190

GGUGACUGGCUCGUCGAGAC

TGACTGGCTCGTCGAGAC

Yes

nanos2l gRNA2

Sp nanos2.250

GGGAUCUCAGCGAUGUUCAG

GATCTCAGCGATGTTCAG

NO

nanos2l gRNA3

Sp nanos2.295

GGAGGAAGGCGAGCCAACAA

GGAGGAAGGCGAGCCAACAA

Yes

nanos2l gRNA4

Sp nanos2.319

GGAGGUGGUGCUACGGGUGU

GAGGTGGTGCTACGGGTGT

Yes

dll gRNA1

Delta-1 (19D10)

GGGUGAACUGGUAGCACGG

GGGTGAACTGGTAGCACGG

Yes

dll gRNA2

Delta-2 (20D11)

GGCUACACGUGCCUCUGUCC

GGCTACACGTGCCTCTGTCC

Yes

dll gRNA3

Delta-3 (20D14)

GGACCGAAUCAGAUUCCGCG

GGACCGAATCAGATTCCGCG

nd

alx1 gRNA1

Alx1-sgRNA1

GGAGAACAGGCGCGCCAAGUGG

AGAACAGGCGCGCCAAGTG

Yes

alx1 gRNA2

Alx1-sgRNA2

GGCGUGGGGGGCCUCAACCCGG

GCGTGGGGGGCCTCAACCCGG

Yes

LOC584189 gRNA1

Dsh-sgRNA1

GGGUAGCUUAGCCAGGCCGAUG

GGTAGCTTAGCCAGGCCGATG

Yes

LOC584189 gRNA2

Dsh-sgRNA2

GGCAUCGGUCCCCCUAGCCAGG

GGCATCGGTCCCCCTAGCCAGG

Yes