Epgfp and Bac vector library: Difference between pages

From EchinoWiki
(Difference between pages)
Jump to navigation Jump to search
imported>Ctelmer
No edit summary
 
imported>Ctelmer
No edit summary
 
Line 1: Line 1:


<p>The plasmid vector used as a vehicle to test the cis-regulatory function of randomly cloned genomic DNA fragments was modified from a previous construct, EpGFP (Arnone et al., 1997; Arnone et al., 1998). The grand-parent of this plasmid was pCMV (Clontech); it has ampicillin resistance. EpGFP contains the region around the start of transcription of the endo16 gene (from -117 to +20).The activity of this element has been described in detail elsewhere (Yuh and Davidson, 1996; Yuh et al., 1996,1998, 2001). In addition to a TATA-containing basal promoter, it contains auxiliary sites for a ubiquitous sea urchin transcription factor which promotes DNA looping and has weak transcriptional enhancement activity(GCF1; Zeller et al., 1995). The vector also includes a sea urchin ribosome binding site from the cyIIa gene (Arnone et al., 1998), positioned at the start of the coding sequence of the [http://www.fpbase.org/protein/gfp-s65t/ GFP (S65T)] reporter. The original EpGFP construct was further modified by the addition of a double-stranded oligonucleotide polylinker inserted between the MluI and XmaI sites in the Multiple Cloning Site (MCS), so that the MCS contains the following restriction enzyme sites: 5'-KpnI-SacI-MluI-EcoRI-SpeI-BglII-SmaI/XmaI-3', situated just upstream of the endo16 basal promoter.</p>
== BAC Vector for Macro-array Genomic Libraries ==


Frengen E., Weichenhan D., Zhao B., Osoegawa K., van Geel M., de Jong P. J. 1999. A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics. 58(3):250-3. [https://www.ncbi.nlm.nih.gov/pubmed/?term=10373322%5BUID%5D&utm_source=gquery&utm_medium=search PUBMED 10373322]
<br>
<p><u>Abstract</u></p>
<p>To construct large-insert libraries for the sequencing, mapping, and functional studies of complex genomes, we have constructed a new modular bacterial artificial chromosome (BAC) vector, pBACe3.6 (GenBank Accession No. U80929). This vector contains multiple cloning sites located within the sacB gene, allowing positive selection for recombinant clones on sucrose-containing medium. A recognition site for the PI-SceI nuclease has also been included, which permits linearization of recombinant DNA irrespective of the characteristics of the insert sequences. An attTn7 sequence present in pBACe3.6 permits retrofitting of BAC clones by Tn7-mediated insertion of desirable sequence elements into the vector portion. The ability to retrofit BAC clones will be useful for functional analysis of genes carried on the cloned inserts. The pBACe3.6 vector has been used for the construction of many genomic libraries currently serving as resources for large-scale mapping and sequencing.</p>


== EPGFPII ==
<p>NB: pBACe3.6 clones have chloramphenicol antibiotic resistance. Clones should be grown in LB containing 12.5 ug chloramphenicol/ml. Further information on this vector is available from ''CHORI, Children's Hospital Oakland Research Center''</p>


[[image:Small_map.jpg||left|700x700px|EpGFPII plasmid vector]]
== BAC Library Screening ==


<p><u>Materials:</u></p>
<p>Hybridization solution:</p>
<p style="margin-left:10%; margin-right:10%;">• 5x SSPE</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1% NaPPi</p>
<p style="margin-left:10%; margin-right:10%;">• 5% (w/v) SDS</p>
<p>Stripping buffer:</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1x SSC</p>
<p style="margin-left:10%; margin-right:10%;">• 0.1% SDS (w/v)</p>
<p style="margin-left:10%; margin-right:10%;">• 0.2 M Tris-HCl, pH 7.5</p>
<p>DNA Probes:</p>
<p style="margin-left:10%; margin-right:10%;">• See [https://www.agilent.com/cs/library/usermanuals/Public/300385.pdf Agilent Prime-II Random Primer Labeling Kit]</p>
<p style="margin-left:10%; margin-right:10%;">• Sephadex G50</p>


<div class="toccolours mw-collapsible mw-collapsed" style="clear:both">
EpGFPII FASTA Sequence
<div class="mw-collapsible-content">>epgfpii
<pre>
1          11        21        31        41        51        61        71        81        90       
  |          |          |          |          |          |          |          |          |        |
  GGTACCGAGC TCTTACGCGT GAATTCACTA GTAGATCTCC CGGGTTAAAC TGTTTGAGTT TCGTCTCCTG ATTGTGCTAT CAAAGACAAA    90 epgfpii
  GGGGTGTAAC TTTACCCCCC TCATCAAGAG CGGAGGGTTA AATAGAGAAA GACTGGTCGA GGACAGGTCA TAATATTGCT AATTTTTAAG  180 epgfpii
  CTTATCATCA TGTGTGACGA CGACGTCGCC GCTCTTGTCG TCGACAACGG ATCTGCGGCC GCCGCCACCA TGAGCAAGGG CGAGGAACTG  270 epgfpii
  TTCACTGGCG TGGTCCCAAT TCTCGTGGAA CTGGATGGCG ATGTGAATGG GCACAAATTT TCTGTCAGCG GAGAGGGTGA AGGTGATGCC  360 epgfpii
  ACATACGGAA AGCTCACCCT GAAATTCATC TGCACCACTG GAAAGCTCCC TGTGCCATGG CCAACACTGG TCACTACCTT CACCTATGGC  450 epgfpii
  GTGCAGTGCT TTTCCAGATA CCCAGACCAT ATGAAGCAGC ATGACTTTTT CAAGAGCGCC ATGCCCGAGG GCTATGTGCA GGAGAGAACC  540 epgfpii
  ATCTTTTTCA AAGATGACGG GAACTACAAG ACCCGCGCTG AAGTCAAGTT CGAAGGTGAC ACCCTGGTGA ATAGAATCGA GCTGAAGGGC  630 epgfpii
  ATTGACTTTA AGGAGGATGG AAACATTCTC GGCCACAAGC TGGAATACAA CTATAACTCC CACAATGTGT ACATCATGGC CGACAAGCAA  720 epgfpii
  AAGAATGGCA TCAAGGTCAA CTTCAAGATC AGACACAACA TTGAGGATGG ATCCGTGCAG CTGGCCGACC ATTATCAACA GAACACTCCA  810 epgfpii
  ATCGGCGACG GCCCTGTGCT CCTCCCAGAC AACCATTACC TGTCCACCCA GTCTGCCCTG TCTAAAGATC CCAACGAAAA GAGAGACCAC  900 epgfpii
  ATGGTCCTGC TGGAGTTTGT GACCGCTGCT GGGATCACAC ATGGCATGGA CGAGCTGTAC AAGTGAGCGG CCGCGGCTCG AGGCTCTAGA  990 epgfpii
  GTCGGGGCGG CCGGCCGCTT CGAGCAGACA TGATAAGATA CATTGATGAG TTTGGACAAA CCACAACTAG AATGCAGTGA AAAAAATGCT  1080 epgfpii
  TTATTTGTGA AATTTGTGAT GCTATTGCTT TATTTGTAAC CATTATAAGC TGCAATAAAC AAGTTAACAA CAACAATTGC ATTCATTTTA  1170 epgfpii
  TGTTTCAGGT TCAGGGGGAG GTGTGGGAGG TTTTTTAAAG CAAGTAAAAC CTCTACAAAT GTGGTAAAAT CGATAAGGAT CCGTCGACCG  1260 epgfpii
  ATGCCCTTGA GAGCCTTCAA CCCAGTCAGC TCCTTCCGGT GGGCGCGGGG CATGACTATC GTCGCCGCAC TTATGACTGT CTTCTTTATC  1350 epgfpii
  ATGCAACTCG TAGGACAGGT GCCGGCAGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT  1440 epgfpii
  ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC  1530 epgfpii
  CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG  1620 epgfpii
  GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC  1710 epgfpii
  CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG  1800 epgfpii
  CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG  1890 epgfpii
  ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG  1980 epgfpii
  GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG  2070 epgfpii
  ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC  2160 epgfpii
  TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGAGA TTATCAAAAA GGATCTTCAC  2250 epgfpii
  CTAGATCCTT TTAAATTAAA AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG  2340 epgfpii
  TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT  2430 epgfpii
  ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC  2520 epgfpii
  CGAGCGCAGA AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA  2610 epgfpii
  TAGTTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG  2700 epgfpii
  ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC  2790 epgfpii
  AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC  2880 epgfpii
  AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT ACGGGATAAT ACCGCGCCAC ATAGCAGAAC  2970 epgfpii
  TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC  3060 epgfpii
  TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG  3150 epgfpii
  AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG  3240 epgfpii
  ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGCGC CCTGTAGCGG  3330 epgfpii
  CGCATTAAGC GCGGCGGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC  3420 epgfpii
  TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT CTAAATCGGG GGCTCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT  3510 epgfpii
  CGACCCCAAA AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC CCTTTGACGT TGGAGTCCAC  3600 epgfpii
  GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGTCTA TTCTTTTGAT TTATAAGGGA TTTTGCCGAT  3690 epgfpii
  TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT CCCATTCGCC  3780 epgfpii
  ATTCAGGCTG CGCAACTGTT GGGAAGGGCG ATCGGTGCGG GCCTCTTCGC TATTACGCCA GCCCAAGCTA CCATGATAAG TAAGTAATAT  3870 epgfpii
  TAAGGTACGG GAGGTACTTG GAGCGGCCGC AATAAAATAT CTTTATTTTC ATTACATCTG TGTGTTGGTT TTTTGTGTGA ATCGATAGTA  3960 epgfpii
  CTAACATACG CTCTCCATCA AAACAAAACG AAACAAAACA AACTAGCAAA ATAGGCTGTC CCCAGTGCAA GTGCAGGTGC CAGAACATTT  4050 epgfpii
  CTCTATCGAT A                                                                                        4061 epgfpii
</pre></div>
</div>
[http://ftp.echinobase.org/pub/WikiDownloads/epgfpii.fasta Download FASTA file for EpGFPII]


=== REFERENCES ===
== BAC Miniprep Protocol ==


Yuh, C. H., Moore, J. G. and Davidson, E. H. Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene. Development 122, 4045-4056, 1996.<span class="newwin">[https://new.echinobase.org/literature/article.do?method=display&articleId=36543  [open<nowiki>]</nowiki>]</span>
<p>This protocol uses alkaline lysis and precipitation to isolate BAC DNA to analyze by Pulsed-field Gel Electrophoresis, PFGE, or PCR. BACs purified using this protocol '''cannot''' be injected into fertilized eggs.</p>
 
<br>
Yuh, C.-H. and Davidson, E. H. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development 122, 1069-1082, 1996.<span class="newwin">[http://new.echinobase.org/literature/article.do?method=display&articleId=36421  [open<nowiki>]</nowiki>]</span>
<p><u>Materials:</u></p>
 
<p>Buffer P1: Stored at 4<sup>o</sup>C. '''Add the RNAseA just prior to use.'''</p>
Yuh, C.-H., Bolouri, H. and Davidson, E. H. Genomic cis-regulatory logic: Functional analysis and computational model of a sea urchin gene control system. Science 279, 1896-1902, 1998.
<p style="margin-left:10%; margin-right:10%;">• 15 mM Tris, pH 8.0</p>
<span class="newwin">[http://new.echinobase.org/literature/article.do?method=display&articleId=36860 [open<nowiki>]</nowiki>]</span>
<p style="margin-left:10%; margin-right:10%;">• 10 mM EDTA, pH 8.0</p>
 
<p style="margin-left:10%; margin-right:10%;">• 100 μg/ml RNase A</p>
Yuh, C.-H., Bolouri, H. and Davidson, E. H. cis-Regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control. Development 128, 617-628, 2001.
<p>Buffer P2: '''Make fresh each use.'''</p>
<span class="newwin">[http://new.echinobase.org/literature/article.do?method=display&articleId=37679  [open<nowiki>]</nowiki>]</span>
<p style="margin-left:10%; margin-right:10%;">• 0.2N NaOH</p>
 
<p style="margin-left:10%; margin-right:10%;">• 1% SDS</p>
Zeller, R. W., Coffman, J. A., Harrington, M. G., Britten, R. J. and Davidson, E. H. SpGCF1, a sea urchin embryo transcription factor, exists as five nested variants encoded by a single mRNA. Dev. Biol. 169, 713-727, 1995.
<p>Buffer P3: '''Cool on ice prior to use.'''</p>
<span class="newwin">[http://new.echinobase.org/literature/article.do?method=display&articleId=35795 [open<nowiki>]</nowiki>]</span>
<p style="margin-left:10%; margin-right:10%;">• 3M KAc pH 5.5</p>
 
<br>
Arnone, M. and Davidson, E. H. The hardwiring of development: Organization and function of genomic regulatory systems. Development 124, 1851-1864, 1997.
<p><u>Procedure:</u></p>
 
<p>1. Inoculate a single bacterial colony into 3 ml LB containing 12.5μg/ml chloramphenicol in a 14 ml culture tube. Grow overnight (< 16 hrs), shaking at 250-300 rpm.</p>
Arnone, M. I., Martin, E. L. and Davidson. E. H. Cis-regulation downstream of cell type specification: A single compact element controls the complex expression of the CyIIa gene in sea urchin embryos. Development 125, 1381-1395, 1998.
<p style="margin-left:10%; margin-right:10%;">'''Optional''': make bacterial glycerol stock (15%) of BAC.</p>
<span class="newwin">[http://new.echinobase.org/literature/article.do?method=display&articleId=36858  [open<nowiki>]</nowiki>]</span>
<p>2. Pellet the bacteria by transferring 1.5 ml of each culture to a 1.7 ml microcentrifuge tube and centrifuge at 6800 g for 3 min. Discard supernatant.</p>
<p>3. Repeat step 2.</p>
<br>
<p>4. Resuspend each pellet in 250 μl '''P1''' carefully. Be sure to fully resuspend until suspension is creamy with no clumps.</p>
<p>5. Add 250 μl '''P2''' and invert tubes 5 times to mix. The appearance of the suspension should change from very turbid to almost translucent.</p>
<p>6. Add 350 μl cold '''P3''' slowly to each tube and shake gently during addition. A thick white precipitate consisting of E. coli DNA and protein will form. Invert the tube several times to mix the solution thoroughly.</p>
<p>7. Place the tubes on ice for 5 min.</p>
<br>
<p>8. Centrifuge at 18,000 x g for 10 min at room temperature to pellet the white precipitate.</p>
<p>9. Transfer the clear supernatant (~700-800 μl) to a 1.7 ml microcentrifuge tube.</p>
<p>10. Spin again in a microcentrifuge for 5 min at RT to remove the rest of the debris. Transfer the clear supernatant to a fresh tube.</p>
<p>11. Add 0.8 ml '''ice-cold isopropanol'''. Mix well by inverting tubes ~10 times. Place the tube on ice for 30 min, or leave overnight at  4°C.</p>
<br>
<p>12Centrifuge at 18,000 x g for 30 min at 4<sup>o</sup>C to pellet BAC DNA.</p>
<p>13. Remove supernatant and add 1ml of '''ice-cold 70% EtOH'''. Invert tubes several times to wash the DNA pellets. Centrifuge at 18,000 x g for 15 min at 4<sup>o</sup>C.</p>
<p>14. Repeat step 13.</p>
<br>
<p>15. Centrifuge at 18,000 x g for 2 min at 4<sup>o</sup>C to remove residual EtOH. Carefully remove all supernatant, taking care not to dislodge the pellet.</p>
<p>16. Briefly air-dry pellet at room temperature.</p>
<p>17. Resuspend pellet in 20-30 μl TE (10 mM Tris; 1 mM EDTA). Gently flick the bottom of the tubes to resuspend DNA. '''Do not vortex or pipet up and down'''.</p>
<br>
<p>For storing use high EDTA TE - i.e. 10mM Tris 10mM EDTA.</p>
<p>To analyze the BACs, use 6 μL of this prep in a ''Not''I digest to run on a PFGE.</p>
<p>For PCR dilute 1 μl of this prep in 24 μl TE.</p>

Revision as of 13:32, 22 April 2020

BAC Vector for Macro-array Genomic Libraries

Frengen E., Weichenhan D., Zhao B., Osoegawa K., van Geel M., de Jong P. J. 1999. A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics. 58(3):250-3. PUBMED 10373322

Abstract

To construct large-insert libraries for the sequencing, mapping, and functional studies of complex genomes, we have constructed a new modular bacterial artificial chromosome (BAC) vector, pBACe3.6 (GenBank Accession No. U80929). This vector contains multiple cloning sites located within the sacB gene, allowing positive selection for recombinant clones on sucrose-containing medium. A recognition site for the PI-SceI nuclease has also been included, which permits linearization of recombinant DNA irrespective of the characteristics of the insert sequences. An attTn7 sequence present in pBACe3.6 permits retrofitting of BAC clones by Tn7-mediated insertion of desirable sequence elements into the vector portion. The ability to retrofit BAC clones will be useful for functional analysis of genes carried on the cloned inserts. The pBACe3.6 vector has been used for the construction of many genomic libraries currently serving as resources for large-scale mapping and sequencing.

NB: pBACe3.6 clones have chloramphenicol antibiotic resistance. Clones should be grown in LB containing 12.5 ug chloramphenicol/ml. Further information on this vector is available from CHORI, Children's Hospital Oakland Research Center

BAC Library Screening

Materials:

Hybridization solution:

• 5x SSPE

• 0.1% NaPPi

• 5% (w/v) SDS

Stripping buffer:

• 0.1x SSC

• 0.1% SDS (w/v)

• 0.2 M Tris-HCl, pH 7.5

DNA Probes:

• See Agilent Prime-II Random Primer Labeling Kit

• Sephadex G50


BAC Miniprep Protocol

This protocol uses alkaline lysis and precipitation to isolate BAC DNA to analyze by Pulsed-field Gel Electrophoresis, PFGE, or PCR. BACs purified using this protocol cannot be injected into fertilized eggs.


Materials:

Buffer P1: Stored at 4oC. Add the RNAseA just prior to use.

• 15 mM Tris, pH 8.0

• 10 mM EDTA, pH 8.0

• 100 μg/ml RNase A

Buffer P2: Make fresh each use.

• 0.2N NaOH

• 1% SDS

Buffer P3: Cool on ice prior to use.

• 3M KAc pH 5.5


Procedure:

1. Inoculate a single bacterial colony into 3 ml LB containing 12.5μg/ml chloramphenicol in a 14 ml culture tube. Grow overnight (< 16 hrs), shaking at 250-300 rpm.

Optional: make bacterial glycerol stock (15%) of BAC.

2. Pellet the bacteria by transferring 1.5 ml of each culture to a 1.7 ml microcentrifuge tube and centrifuge at 6800 g for 3 min. Discard supernatant.

3. Repeat step 2.


4. Resuspend each pellet in 250 μl P1 carefully. Be sure to fully resuspend until suspension is creamy with no clumps.

5. Add 250 μl P2 and invert tubes 5 times to mix. The appearance of the suspension should change from very turbid to almost translucent.

6. Add 350 μl cold P3 slowly to each tube and shake gently during addition. A thick white precipitate consisting of E. coli DNA and protein will form. Invert the tube several times to mix the solution thoroughly.

7. Place the tubes on ice for 5 min.


8. Centrifuge at 18,000 x g for 10 min at room temperature to pellet the white precipitate.

9. Transfer the clear supernatant (~700-800 μl) to a 1.7 ml microcentrifuge tube.

10. Spin again in a microcentrifuge for 5 min at RT to remove the rest of the debris. Transfer the clear supernatant to a fresh tube.

11. Add 0.8 ml ice-cold isopropanol. Mix well by inverting tubes ~10 times. Place the tube on ice for 30 min, or leave overnight at 4°C.


12. Centrifuge at 18,000 x g for 30 min at 4oC to pellet BAC DNA.

13. Remove supernatant and add 1ml of ice-cold 70% EtOH. Invert tubes several times to wash the DNA pellets. Centrifuge at 18,000 x g for 15 min at 4oC.

14. Repeat step 13.


15. Centrifuge at 18,000 x g for 2 min at 4oC to remove residual EtOH. Carefully remove all supernatant, taking care not to dislodge the pellet.

16. Briefly air-dry pellet at room temperature.

17. Resuspend pellet in 20-30 μl TE (10 mM Tris; 1 mM EDTA). Gently flick the bottom of the tubes to resuspend DNA. Do not vortex or pipet up and down.


For storing use high EDTA TE - i.e. 10mM Tris 10mM EDTA.

To analyze the BACs, use 6 μL of this prep in a NotI digest to run on a PFGE.

For PCR dilute 1 μl of this prep in 24 μl TE.